Search for:

– The Brinell hardness test method as used to determine Brinell hardness, is defined in ASTM E10. Most commonly it is used to test materials that have a structure that is too coarse or that have a surface that is too rough to be tested using another test method, e.g., castings and forgings. Brinell testing often use a very high test load (3000 kgf) and a 10mm wide indenter so that the resulting indentation averages out most surface and sub-surface inconsistencies.

-The Brinell method applies a predetermined test load (F) to a carbide ball of fixed diameter (D) which is held for a predetermined time period and then removed. The resulting impression is measured across at least two diameters – usually at right angles to each other and these result averaged (d). A chart is then used to convert the averaged diameter measurement to a Brinell hardness number. Test forces range from 500 to 3000 kgf.

-A Brinell hardness result measures the permanent width of indentation produced by a carbide indenter applied to a test specimen at a given load, for a given length of time. Typically, an indentation is made with a Brinell hardness testing machine and then measured for indentation diameter in a second step with a specially designed Brinell microscope or optical system. The resulting measurement is converted to a Brinell value using the Brinell formula or a conversion chart based on the formula. Most typically, a Brinell test will use 3000 kgf load with a 10mm ball. If the sample material is aluminum, the test is most frequently performed with a 500 kgf load and 10mm ball. Brinell test loads can range from 3000 kgf down to 1 kgf. Ball indenter diameters can range from 10mm to 1mm. Generally, the lower loads and ball diameters are used for convenience in “combination” testers, like Rockwell units, that have a small load capacity. The test standard specifies a time of 10 to 15 seconds, although shorter times can be used if it is known that the shorter time does not affect the result. There are other conditions that must be met for testing on a round specimen, spacing of indentations, minimum thickness of test specimens, etc.

Showing the single result